GPU Teaching Kit

Accelerated Computing

Module 10.2 — Parallel Computation Patterns (scan)
Lecture 10.2 - A Work-inefficient Scan Kernel



Objective

— To learn to write and analyze a high-performance scan kernel
— Interleaved reduction trees

Thread index to data mapping

Barrier Synchronization

Work efficiency analysis
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A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory
2. lterate log(n) times; stride from 1 to n-1: double stride each iteration
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Active threads stride to n-1 (n-stride threads)

Thread j adds elements j and j-stride from shared memory and writes
result into element j in shared memory

Requires barrier synchronization, once before read and once before
write
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A Better Parallel Scan Algorithm

1. Read input from device to shared memory
2. lterate log(n) times; stride from 1 to n-1: double stride each iteration.
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A Better Parallel Scan Algorithm

1. Read input from device to shared memory

2. lterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory
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Handling Dependencies

— During every iteration, each thread can overwrite the input of
another thread
— Barrier synchronization to ensure all inputs have been properly generated
— All threads secure input operand that can be overwritten by another thread

— Barrier synchronization is required to ensure that all threads have secured their
inputs

— All threads perform addition and write output
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A Work-Inefficient Scan Kernel

__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
__shared__ float XY[SECTION_SIZE];
inti = blockldx.x * blockDim.x + threadldx.x;
if (i < InputSize) {XY[threadldx.x] = X[i]; }
/I the code below performs iterative scan on XY
for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {
__syncthreads();
float in1;
if (stride <= threadldx.x) {
in1 = XY[threadldx.x - stride]; }
__syncthreads();
XY[threadldx.x] += in1;
}
___syncthreads();
If (stride <= threadldx.x) {
XY[threadldx.x] +=in1; }}

SAnvibia



Work Efficiency Considerations

— This Scan executes log(n) parallel iterations
— The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each
— Total adds: n * log(n) - (n-1) = O(n*log(n)) work

— This scan algorithm is not work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) can hurt: 10x for 1024 elements!

— A parallel algorithm can be slower than a sequential one
when execution resources are saturated from low work
efficiency
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