GPU Teaching Kit

Accelerated Computing

Module 10.2 — Parallel Computation Patterns (scan)
Lecture 10.2 - A Work-inefficient Scan Kernel

Objective

— To learn to write and analyze a high-performance scan kernel
— Interleaved reduction trees

Thread index to data mapping

Barrier Synchronization

Work efficiency analysis

SAnvibia

A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory
2. lterate log(n) times; stride from 1 to n-1: double stride each iteration

X131 1(7101]4]|1]|6]|3
STRIDE 1 D;WW
XX 3 14 (&1 714517169

ITERATION = 1
STRIDE =1

Active threads stride to n-1 (n-stride threads)

Thread j adds elements j and j-stride from shared memory and writes
result into element j in shared memory

Requires barrier synchronization, once before read and once before
write

SAnvibia

A Better Parallel Scan Algorithm

1. Read input from device to shared memory
2. lterate log(n) times; stride from 1 to n-1: double stride each iteration.

X3 (17041]6]3

STRIDE 1 WW

XY 3 (48171451719
STRIDE2¢
XY 3 |4 (1111 {12]12]11]14
ITERATION = 2
STRIDE = 2

Muunos [/

A Better Parallel Scan Algorithm

1. Read input from device to shared memory

2. lterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

X3 (17041]6]3

STRIDE 1 WW

X[3 |4 &7 457169
STRIDE2¢
XY 3 (4 |11 1L {12112(11]14
STR|DE4¢W—)¥—)¥
XY 3[4 |11 |11 |15]16|22]25
ITERATION = 3
STRIDE = 4

SAnvibia

Muunos [/

Handling Dependencies

— During every iteration, each thread can overwrite the input of
another thread
— Barrier synchronization to ensure all inputs have been properly generated
— All threads secure input operand that can be overwritten by another thread

— Barrier synchronization is required to ensure that all threads have secured their
inputs

— All threads perform addition and write output

XXf3|1(7({014(1]6]3

STRIDE 1 Déww

XY[3 148171451719

ITERATION = 1
STRIDE = 1

SAnvibia

A Work-Inefficient Scan Kernel

__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
__shared__ float XY[SECTION_SIZE];
inti = blockldx.x * blockDim.x + threadldx.x;
if (i < InputSize) {XY[threadldx.x] = X[i]; }
/I the code below performs iterative scan on XY
for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {
__syncthreads();
float in1;
if (stride <= threadldx.x) {
in1 = XY[threadldx.x - stride]; }
__syncthreads();
XY[threadldx.x] += in1;
}
___syncthreads();
If (stride <= threadldx.x) {
XY[threadldx.x] +=in1; }}

SAnvibia

Work Efficiency Considerations

— This Scan executes log(n) parallel iterations
— The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each
— Total adds: n * log(n) - (n-1) = O(n*log(n)) work

— This scan algorithm is not work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) can hurt: 10x for 1024 elements!

— A parallel algorithm can be slower than a sequential one
when execution resources are saturated from low work
efficiency

Anvioia / \ouvos [

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 10.2 – Parallel Computation Patterns (scan)
	Objective
	A Better Parallel Scan Algorithm
	A Better Parallel Scan Algorithm
	A Better Parallel Scan Algorithm
	Handling Dependencies
	 A Work-Inefficient Scan Kernel
	Work Efficiency Considerations
	Slide Number 9

