
GPU Teaching Kit
Accelerated Computing

Module 14 – Efficient Host-Device Data Transfer

Lecture 14.4 – CUDA Unified Memory

Objective

– -To learn the important concepts involved in an efficient use of CUDA
Unified Memory
- Prefetching

- Memory Advisor

2

Data Prefetching in CUDA Unified Memory

– Main purpose being to avoid page faults

– Establishes data locality, providing a mechanism to improve

the performance of the application

– Used to migrate data to a device or the host and map page tables onto

the processor before it begins using data

– Most useful when the data is accessed from a single processor

3

Data Prefetching CUDA API

– cudaMemPrefetchAsync()

– Four parameters

– Unified Memory Address of the

memory region to prefetch

– Size of the region to prefetch in

terms of bytes

– Destination processor

– CUDA stream

– Prefetching is an asynchronous

operation with respect to the device,

however the call may not be

fully asynchronous with respect to the

host .

– The destination processor must be a

valid device ID or cudaCpuDeviceId, the

later will prefetch the memory to the

host.

– If the prefetch processor is a GPU, the

device property

cudaDevAttrConcurrentManagedAccess must

be nonzero.

4

Putting it all together

void function(int * data, cudaStream_t stream) {

// data must've been allocated with cudaMallocManaged((void**) &data, N);

init(data, N); // Init data on the host

cudaMemPrefetchAsync(data, N * sizeof(int), myGpuId, stream); // Prefetch to the device

kernel<<<..., stream>>>(data, ...); // Execute on the device

cudaMemPrefetchAsync(data, N * sizeof(int), cudaCpuDeviceId, stream); // Prefetch to the host

cudaStreamSynchronize(stream);

hostFunction(data, N);

}

5

CUDA Unified Memory - Memory Advisor

- Hints that can be provided to the driver on how data will be used during
runtime

- One example of when we can give an advice is when data will be
accessed from multiple processors at the same time

6

Memory Advisor CUDA API

– cudaMemAdvise()

– Four parameters

– Unified Memory Address of

the memory region to

advise

– Size of the region to advise

in terms of bytes

– Memory advise

– Destination processor

– The destination processor must be a

valid device ID or cudaCpuDeviceId.

– Available memory hints are:

– cudaMemAdviseSetReadMostly

– cudaMemAdviseSetPreferredLocation

– cudaMemAdviseSetAccessedBy

To unset the advice:

– cudaMemAdviseUnsetReadMostly

– cudaMemAdviseUnsetPreferredLocation

– cudaMemAdviseUnsetAccessedBy

7

Memory Advisor CUDA API

– cudaMemAdviseSetReadMostly:

– This tells the UM driver that the memory region is mostly for reading purposes and occasionally writing.

– All read accesses from a processor will create a read only copy to be accessed.

– The device argument is ignored.

– When used in conjunction with cudaMemPrefetchAsync() a read only copy will be created in the specified

device.

– cudaMemAdviseSetPreferredLocation:

– This tells the UM driver the preferred location of the data.

– However this does not cause immediate data migration to the location, it only guides the migration policy for the

UM driver.

– If the destination processor is a GPU, then that GPU needs a nonzero value for the device flag

cudaDevAttrConcurrentManagedAccess.

8

Memory Advisor CUDA API

– cudaMemAdviseSetAccessedBy:
– This tell the UM driver that the data will be accessed by the specified processor.

– This advice does not cause immediate data migration to the location, it only causes data to

always be mapped in the specified processor’s pages.

– It is useful to avoid page faulting, like when in a multi-GPU system one device wants to

access another GPU's memory but migrating the data may be more expensive than just

reading it through the PCIE link.

9

Putting it all together

void function(int * data, cudaStream_t stream) {

// data must be addressable by the Unified Memory driver.

init(data, N); // Init data on the host

cudaMemAdvise(data, N * sizeof(int), cudaMemAdviseSetReadMostly , 0); // Set the advice for read only.

cudaMemPrefetchAsync(data, N * sizeof(int), myGpuId1, stream1); // Prefetch to the 1st device.

cudaMemPrefetchAsync(data, N * sizeof(int), myGpuId2, stream2); // Prefetch to the 2nd device.

cudaSetDevice(myGpuId1); // Execute read only operations

kernel<<<..., stream>>>(data, ...); // on the 1st device.

cudaSetDevice(myGpuId2); // Execute read only operations

kernel<<<..., stream>>>(data, ...); // on the 2nd device.

}

10

GPU Teaching Kit
Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA under the Creative Commons
Attribution-NonCommercial 4.0 International License..

http://creativecommons.org/licenses/by-nc/4.0/legalcode

