GPU Teaching Kit

Accelerated Computing

Module 14 — Efficient Host-Device Data Transfer
Lecture 14.4 — CUDA Unified Memory

WERSITYOF
nVIDIA EIA

Objective

— -To learn the important concepts involved in an efficient use of CUDA
Unified Memory
Prefetching
Memory Advisor

Data Prefetching in CUDA Unified Memory

— Main purpose being to avoid page faults

— Establishes data locality, providing a mechanism to improve
the performance of the application

— Used to migrate data to a device or the host and map page tables onto
the processor before it begins using data

— Most useful when the data is accessed from a single processor

Data Prefetching CUDA API

— cudaMemPrefetchAsync()
— Four parameters

Unified Memory Address of the
memory region to prefetch

Size of the region to prefetch in
terms of bytes

Destination processor
CUDA stream

Prefetching is an asynchronous
operation with respect to the device,
however the call may not be

fully asynchronous with respect to the
host .

The destination processor must be a
valid device ID or cudaCpuDeviceld, the
later will prefetch the memory to the
host.

If the prefetch processor is a GPU, the
device property
cudaDevAttrConcurrentManagedAccess must
be nonzero.

B D

Putting It all together

void function(int * data, cudaStream _t stream) {

// data must've been allocated with cudaMallocManaged((void**) &data, N);

init(data, N); /l Init data on the host
cudaMemPrefetchAsync(data, N * sizeof(int), myGpuld, stream); I/ Prefetch to the device
kernel<<<..., stream>>>(data, ...); I/l Execute on the device

cudaMemPrefetchAsync(data, N * sizeof(int), cudaCpuDeviceld, stream); // Prefetch to the host
cudaStreamSynchronize(stream);
hostFunction(data, N);

&
5 i D

CUDA Unified Memory - Memory Advisor

- Hints that can be provided to the driver on how data will be used during
runtime

- One example of when we can give an advice is when data will be
accessed from multiple processors at the same time

Memory Advisor CUDA API

— cudaMemAdvise()
— Four parameters

Unified Memory Address of
the memory region to
advise

Size of the region to advise
In terms of bytes

Memory advise
Destination processor

The destination processor must be a
valid device ID or cudaCpuDeviceld.

Available memory hints are:

— cudaMemAdviseSetReadMostly

— cudaMemAdviseSetPreferredLocation
— cudaMemAdviseSetAccessedBy

To unset the advice:

— cudaMemAdviseUnsetReadMostly

— cudaMemAdviseUnsetPreferredLocation
— cudaMemAdviseUnsetAccessedBy

B D

Memory Advisor CUDA API

cudaMemAdviseSetReadMostly:

This tells the UM driver that the memory region is mostly for reading purposes and occasionally writing.
All read accesses from a processor will create a read only copy to be accessed.

The device argument is ignored.

When used in conjunction with cudaMemPrefetchAsync() a read only copy will be created in the specified

device.

cudaMemAdviseSetPreferredLocation:

This tells the UM driver the preferred location of the data.

However this does not cause immediate data migration to the location, it only guides the migration policy for the

UM driver.

If the destination processor is a GPU, then that GPU needs a nonzero value for the device flag

cudaDevAttrConcurrentManagedAccess.

B D

Memory Advisor CUDA API

cudaMemAdviseSetAccessedBY:

— This tell the UM driver that the data will be accessed by the specified processor.

— This advice does not cause immediate data migration to the location, it only causes data to
always be mapped in the specified processor’s pages.

— Itis useful to avoid page faulting, like when in a multi-GPU system one device wants to

access another GPU's memory but migrating the data may be more expensive than just
reading it through the PCIE link.

&
: i D

Putting It all together

void function(int * data, cudaStream _t stream) {
/[data must be addressable by the Unified Memory driver.
init(data, N); // Init data on the host

cudaMemAdvise(data, N * sizeof(int), cudaMemAdviseSetReadMostly , 0); // Set the advice for read only.

cudaMemPrefetchAsync(data, N * sizeof(int), myGpuldl, streaml); Il Prefetch to the 1st device.
cudaMemPrefetchAsync(data, N * sizeof(int), myGpuld2, stream?2); Il Prefetch to the 2nd device.
cudaSetDevice(myGpuldl); /I Execute read only operations
kernel<<<..., stream>>>(data, ...); /l on the 1st device.
cudaSetDevice(myGpuld2); /I Execute read only operations
kernel<<<..., stream>>>(data, ...); // on the 2nd device.

&
10 i D

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA under the Creative Commons
Attribution-NonCommercial 4.0 International License..

WVERSITYOF
nVIDIA EIA

http://creativecommons.org/licenses/by-nc/4.0/legalcode

