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Objective

– To learn how to apply parallel programming techniques to an 
application 
– Thread coarsening for more work efficiency 

– Data structure padding for reduced divergence

– Memory access locality and pre-computation techniques
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VMD

– Visual Molecular Dynamics
– Visualizing, animating, and analyzing bio-molecular systems

– More than 200,000 users worldwide

– Batch (movie making) vs. interactive mode

– Runs on laptops, desktops, clusters, supercomputers
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Electrostatic Potential Map

– Calculate initial electrostatic potential map around the simulated 
structure considering the contributions of all atoms
– Most time consuming, focus of our example.

potential[j]: potential 

at grid (lattice) point 

being evaluated

atom[i]

ri,j: distance from  

grid (lattice) point 

j to atom[i]
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Electrostatic Potential Calculation

– The contribution of atom[i] to the electrostatic potential at lattice[j] is 
potential[j] = atom[i].charge / rij. 

– In the Direct Coulomb Summation method, the total potential at 
lattice point j is the sum of contributions from all atoms in the system.
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Overview of Direct Coulomb Summation 
(DCS) Algorithm

– One way to compute the electrostatic potentials on a grid, 
ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

– For each lattice point, sum potential contributions for all 
atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])

– Approximation-based methods such as cut-off summation 
can achieve much higher performance at the cost of 
some numerical accuracy and flexibility
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Irregular Input vs. Regular Output

– Atoms come from modeled 
molecular structures, solvent 
(water) and ions
– Irregular by necessity

– Energy grid models the 
electrostatic potential value at 
regularly spaced points
– Regular by design

©Wen-mei W. Hwu and David 
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Summary of Sequential C Version

– Algorithm is input oriented
– For each input atom, calculate its contribution to all grid points in an x-y slice

– Output (energy grid) is regular
– Simple linear mapping between grid point indices and modeled physical 

coordinates

– Input (atom) is irregular
– Modeled x,y,z coordinate of each atom needs to be stored in the atom array

– The algorithm is efficient in performing minimal number of 
calculations on distances, coordinates, etc.
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A Sequential C Version
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CUDA DCS Implementation Overview

– Allocate and initialize potential map memory on host CPU

– Allocate potential map slice buffer on GPU

– Preprocess atom coordinates and charges

– Loop over potential map slices:
– Copy potential map slice from host to GPU

– Loop over groups of atoms:

– Copy atom data to GPU

– Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host

– Free resources
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CUDA Parallelization

– Operations done fore each lattice point are independent of each
other, what makes them good candidate for parallelization

– Atom positions and charges are used for all lattice point calculation, 
retriving data is apotential bottleneck.
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Overview of the DCS kernel design
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A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms, 

int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
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A Fast DCS CUDA Gather Kernel
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Adjustments

– Ratio of calculation to memory acess ratio is suboptimal

– dz*dz is always the same and can be cached
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A Fast DCS CUDA Gather Kernel v2
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Memory Coalesing
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A Fast DCS CUDA Gather Kernel v2
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Speed comparison
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