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Module 16 - Application Case Study — Electrostatic Potential Calculation
Lecture 16.1 - Electrostatic Potential Calculation



Objective

— To learn how to apply parallel programming techniques to an
application
— Thread coarsening for more work efficiency
— Data structure padding for reduced divergence
— Memory access locality and pre-computation techniques
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VMD

— Visual Molecular Dynamics
— Visualizing, animating, and analyzing bio-molecular systems
— More than 200,000 users worldwide
— Batch (movie making) vs. interactive mode
— Runs on laptops, desktops, clusters, supercomputers
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— Calculate initial electrostatic potential map around the simulated
structure considering the contributions of all atoms
— Most time consuming, focus of our example.
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Electrostatic Potential Calculation

— The contribution of atom[i] to the electrostatic potential at lattice[j] is
potential[j] = atom[i].charge / rij.

— In the Direct Coulomb Summation method, the total potential at
lattice point j is the sum of contributions from all atoms in the system.
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Overview of Direct Coulomb Summation
(DCS) Algorithm

— One way to compute the electrostatic potentials on a grid,
ideally suited for the GPU
— All atoms affect all map lattice points, most accurate

— For each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential += charge]i] / (distance to atom([i])

— Approximation-based methods such as cut-off summation
can achieve much higher performance at the cost of
some numerical accuracy and flexibility
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Irregular Input vs. Regular Output

— Atoms come from modeled B T“e”e““'a"‘éei"kf;’;“:‘?:;‘i."&'ti'°"“YS'“G’°”"
molecular structures, solvent
(water) and ions

— lrregular by necessity

— Energy grid models the
electrostatic potential value at
regularly spaced points

— Regqular by design
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Summary of Sequential C Version

— Algorithm is input oriented
— For each input atom, calculate its contribution to all grid points in an x-y slice
— Output (energy grid) is reqular

— Simple linear mapping between grid point indices and modeled physical
coordinates

— Input (atom) is irregular
— Modeled x,y,z coordinate of each atom needs to be stored in the atom array

— The algorithm is efficient in performing minimal number of
calculations on distances, coordinates, etc.
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A Sequential C Version

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms.
int numatoms) {
int 1.j.n:
int atomarrdim = numatoms * 4;
for (j=0: j<grid.y: j++) {
float y = gridspacing * (float) j:
for (1=0: i<grid.x: i++) {
float x = gridspacing * (float) i:
float energy = 0.0f:
for (n=0: n<atomarrdim: n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n ]:
float dy = y - atoms[n+1]:
float dz = z - atoms[n+2]:
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz):
}
energygrid[grid.x*grid.y*k + grid.x*j + 1] = energy:
}
}
}
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CUDA DCS Implementation Overview

— Allocate and initialize potential map memory on host CPU
— Allocate potential map slice buffer on GPU
— Preprocess atom coordinates and charges

— Loop over potential map slices:
— Copy potential map slice from host to GPU
— Loop over groups of atoms:
— Copy atom data to GPU
— Run CUDA Kernel on atoms and potential map slice on GPU
— Copy potential map slice from GPU to host

— Free resources
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CUDA Parallelization

— QOperations done fore each lattice point are independent of each
other, what makes them good candidate for parallelization

— Atom positions and charges are used for all lattice point calculation,
retriving data is apotential bottleneck.




Overview of the DCS kernel design

Host
-A- ---------------------- ----T-- o~ araa
Grid of thread blocks { Atomic
| .
bt | | coordinates
| || charges
¥ __ Lattice padding / H

Thread blocks:
64-256 thread

Constant memory GPU

\ /// } & e

Parallel data | | Parallel data | | Parallel data | | Parallel data | | Parallel data | | Parallel data
Threads compute cache cache cache cache cache cache

up to eight potentials, || exture| | |}| | Texture| | |§| | Texture| | |}{| Texture| | |} | [Texture| | |}| | Texture| |
skipping by half-warps
Global memory

Anvoia [/ @uos




A Fast DCS CUDA Gather Kernel

void  global  cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;
float y
float x
float energy = 0.0f;

gridspacing * (float) 7j;

gridspacing * (float) 1i;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms|[n 17
float dy = yv - atoms[n+1];

float dz = z - atoms[n+2];
energy += atoms[n+3] / sgrtf (dx*dx + dy*dy + dz*dz);
}
energygrid[grid.x*grid.y*k + grid.x*3j + i] += energy;




A Fast DCS CUDA Gather Kernel

float curenergy = energygrid[outaddr]; -<-::j_:j Start global memory reads
| early. Kemel hides some of

—— ., . ,
float coorx = gridspacing * xindex: its own latency.

float coory = gridspacing * yindex;

int atomud;

float energyval=0.0f:

for (atomid=0: atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x:
float dy = coory - atominfo[atomid].y:
energyval += atominfo[atomid].w *

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z):

b " Onlydependency on global
energygrid[outaddr] = curenergy + energyval; | memory readis at the end of
the kernel...
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Adjustments

— Ratio of calculation to memory acess ratio is suboptimal
— dz*dz is always the same and can be cached




A Fast DCS CUDA Gather Kernel v2

...for (atomid=0; atomid<numatoms: atomid++) {
float dy = coory - atominfo[atomid].y:
float dysqpdzsq = (dy * dy) ®atominfo[atomid].z:
float x = atominfo[atomid].x:
float dx1 = coorx| - x:
float dx2 = coorx2 - x:
float dx3 = coorx3 - x;
float dx4 = coorx4 - x:
float charge = atominfo[atomid].w;
energyvalx] += charge * rsqrtf(dx 1*dx1 + dysqpdzsq):
energyvalx2 += charge * rsqrif(dx2*dx2 + dysqpdzsq):
energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq):
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq):

Compared to non-unrolled
kernel: memory loads are
decreased by 4x, and FLOPS
per evaluation are reduced, but
register use 1s increased. . .

Anvoia [/ @uos



Memory Coalesing
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A Fast DCS CUDA Gather Kernel v2

...float coory = gridspacing * yindex:
float coorx = gridspacing * xindex:

float gridspacing_coalesce = gridspacing * BLOCKSIZEX:ﬁ Points spaced for

nt atomid; . _ memory coalescing
for (atomid=0: atomid<numatoms: atomid++) {

float dy = coory - atominfo[atomid].y:

2= * dy) + atomi tomid).z; ————— . .
float dyz2 = (dy * dy) a onunfo[é omid].z =" Reuse partial distance
float dx1 = coorx - atominfo[atomid].x:

[...] components dy”2 + dz"2

float dx8 = dx7 + gridspacing_coalesce:
energyvalxl —= atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2):
[...]

energyvalx8 ~= atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2):
1

J
energygrid[outaddr ] += energyvalx|: - Global memory ops
[...] occur only at the end
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7: of the kernel.
decreases register use
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Speed comparison

Performance versus size
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cclerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
Journal of Computational Chemistry, 28:2618—-2640, 2007.
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