GPU Teaching Kit

Accelerated Computing

Module 16 - Application Case Study — Electrostatic Potential Calculation
Lecture 16.2 - Kernel Optimization



Objective

— To learn how to apply parallel programming technigues to an
application
— A fast gather kernel
— Thread coarsening for more work efficiency and better performance
— Memory access locality and pre-computation techniques
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A Slower Sequential C Version

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int
numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {
float y = gridspacing * (float) j; -
for (int 1=0; i<grid.x; i++) { OUtpUt Orlented
float x = gridspacing * (float) 1;
Tloat energy = 0.0T;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms|[n 1:
float dy = y - atoms[n+1];

float dz z - atoms[n+2];
energy += atoms[n+3] / sqgrtf(dx*dx + dy*dy + dz*dz);
}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;
¥
}
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A Slower Sequential C Version

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const
float *atoms, int numatoms) {

int atomarrdim = numatoms * 4;
Int kK = z / gridspacing;
for (int j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (int 1=0; 1<grid.x; i1++) {
float x = gridspacing * (float) 1;
float energy = 0.0F
for (int n=0; n<atomarrdim; n+=4) {
// calculate potential contribution of each atom
float dx = x - atoms[n 1:
float dy = y - atoms|[n+1];
float dz = 7 - atons[n+2]: More redundant work.

energy += atoms[n+3] / sartf(dx*dx + dy*dy + dz*dz);

— energygrid[grid.x*grid.y*k + grid.x*j + 1] += energy;
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Pros and Cons of the Slower Sequential Code

— Pros
— Fewer accesses to the energygrid array
— Cons
— Many more calculations on the coordinates

— More accesses to the atom array

— Overall, slower sequential execution due to the sheer number of calculations
performed
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Grid of thread blocks

Thread blocks:
64-256 threads 0,0 0,1

1,0 1,1

\\
Threads compute
1 potential each




Gather Parallelization




A Fast DCS CUDA Gather Kernel

void _ global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int 1 blockldx.x * blockDim.x + threadldx.Xx;

int j blockldx.y * blockDim.y + threadldx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing; ) )
float y = gridspacing * (float) i One thread per grid point
float x = gridspacing * (float) 1;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms|[n 1:
float dy = y - atoms[n+1];

float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + 1] += energy;




A Fast DCS CUDA Gather Kernel

void _ global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int 1 = blockldx.x * blockDim.x + threadldx.x;

int j = blockldx.y * blockDim.y + threadldx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

float y = gridspacing * (float) j;
)

il | X = Qgri ing * (fl iz

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms|[n 1:

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);
}

energygridfgrid.x*grid.y*k + grid.x*j + 1] += enerqgy;

All threads access all atoms.
Consolidated writes to grid points
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Some Comments

— Gather kernel is much faster than a scatter kernel
— No serialization due to atomic operations

— Compute-efficient sequential algorithm does not translate into the
fast parallel algorithm
— Gather vs. scatter is a big factor
— But we will come back to this point later!
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More Comments

— In modern CPUs, cache effectiveness is often more important than

compute efficiency
— The input oriented (scatter) sequential code actually has bad cache

performance
— energygrid[] is a very large array, typically 20X or more larger than atom[]
— The input oriented sequential code sweeps through the large data structure for each
atom, wiping out data from the cache before they can be reused.
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Outline of A Fast Sequential Code

for all atoms {pre-compute dz2 }
for all y {
for all atoms {pre-compute dy2 (+ dz2) }
for all x {
for all atoms {
compute contribution to current X,y,z point
using pre-computed dy2 + dz2
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More Thoughts on Fast Sequential Code

— Need temporary arrays for pre-calculated dz2 and dy2 + dz2 values
— So, why does this code has better cache behaior on CPUs?
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Unrolling increases

computational tile size

Thread block;\i

64-256 threads
> $

(unrolled, coalesced)

Grid of thread blocks:
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Threads compute
up to 8 potentials,
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A Compute Efficient Gather Kernel

..float coory = gridspacing * yindex;
float coorx = gridspacing * xindex;
float gridspacing_coalesce = gridspacing * BLOCKSIZEX ;="
int atomid;
for (atomid=0: atomid<numatoms: atomid++) {

float dy = coory - atominfo[atomid].y:
float dyz2 = (dy * dy) + atominfo[atomid].z; —

. . —— Reuse partial distance
float dx1 = coorx - atominfo[atomid].x;
(] components dy”2 + dz"2

| .
Points spaced for

memory coalescing

float dx8 = dx7 + gridspacing coalesce;
energyvalxl += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2):

[...]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2):
h
energygrid[outaddr ] += energyvalxl1: K_ Global memory ops
[...] occur only at the end
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7: of the kernel,
decreases register use
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