GPU Teaching Kit

Accelerated Computing

Module 16 - Application Case Study — Electrostatic Potential Calculation
Lecture 16.1 - Electrostatic Potential Calculation

Objective

— To learn how to apply parallel programming techniques to an
application
— Thread coarsening for more work efficiency
— Data structure padding for reduced divergence
— Memory access locality and pre-computation techniques

Anvoia [/ @uos

VMD

— Visual Molecular Dynamics
— Visualizing, animating, and analyzing bio-molecular systems
— More than 200,000 users worldwide
— Batch (movie making) vs. interactive mode
— Runs on laptops, desktops, clusters, supercomputers

SAnvibia

— Calculate initial electrostatic potential map around the simulated
structure considering the contributions of all atoms
— Most time consuming, focus of our example.

rl,J: distance from
grid (lattice) point
J to atom([i]
potential[j]: potential “ '

at grid (lattice) point
= atom(i]

being evaluated

Electrostatic Potential Calculation

— The contribution of atom[i] to the electrostatic potential at lattice[j] is
potential[j] = atom[i].charge / rij.

— In the Direct Coulomb Summation method, the total potential at
lattice point j is the sum of contributions from all atoms in the system.

Snvioia [

Overview of Direct Coulomb Summation
(DCS) Algorithm

— One way to compute the electrostatic potentials on a grid,
ideally suited for the GPU
— All atoms affect all map lattice points, most accurate

— For each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential += charge]i] / (distance to atom([i])

— Approximation-based methods such as cut-off summation
can achieve much higher performance at the cost of
some numerical accuracy and flexibility

SAnvioia [Eos

Irregular Input vs. Regular Output

— Atoms come from modeled B T“e”e““'a"‘éei"kf;’;“:‘?:;‘i."&'ti'°"“YS'“G’°”"
molecular structures, solvent
(water) and ions

— lrregular by necessity

— Energy grid models the
electrostatic potential value at
regularly spaced points

— Regqular by design

Anvoia [/ @uos

Summary of Sequential C Version

— Algorithm is input oriented
— For each input atom, calculate its contribution to all grid points in an x-y slice
— Output (energy grid) is reqular

— Simple linear mapping between grid point indices and modeled physical
coordinates

— Input (atom) is irregular
— Modeled x,y,z coordinate of each atom needs to be stored in the atom array

— The algorithm is efficient in performing minimal number of
calculations on distances, coordinates, etc.

8

A Sequential C Version

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms.
int numatoms) {
int 1.j.n:
int atomarrdim = numatoms * 4;
for (j=0: j<grid.y: j++) {
float y = gridspacing * (float) j:
for (1=0: i<grid.x: i++) {
float x = gridspacing * (float) i:
float energy = 0.0f:
for (n=0: n<atomarrdim: n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n]:
float dy = y - atoms[n+1]:
float dz = z - atoms[n+2]:
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz):
}
energygrid[grid.x*grid.y*k + grid.x*j + 1] = energy:
}
}
}

e Eanupia f Jiinos

CUDA DCS Implementation Overview

— Allocate and initialize potential map memory on host CPU
— Allocate potential map slice buffer on GPU
— Preprocess atom coordinates and charges

— Loop over potential map slices:
— Copy potential map slice from host to GPU
— Loop over groups of atoms:
— Copy atom data to GPU
— Run CUDA Kernel on atoms and potential map slice on GPU
— Copy potential map slice from GPU to host

— Free resources

Anvoia [/ @uos

CUDA Parallelization

— QOperations done fore each lattice point are independent of each
other, what makes them good candidate for parallelization

— Atom positions and charges are used for all lattice point calculation,
retriving data is apotential bottleneck.

Overview of the DCS kernel design

Host
-A- ---------------------- ----T-- o~ araa
Grid of thread blocks { Atomic
| .
bt | | coordinates
| || charges
¥ __ Lattice padding / H

Thread blocks:
64-256 thread

Constant memory GPU

\ /// } & e

Parallel data | | Parallel data | | Parallel data | | Parallel data | | Parallel data | | Parallel data
Threads compute cache cache cache cache cache cache

up to eight potentials, || exture| | |}| | Texture| | |§| | Texture| | |}{| Texture| | |} | [Texture| | |}| | Texture| |
skipping by half-warps
Global memory

Anvoia [/ @uos

A Fast DCS CUDA Gather Kernel

void global cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;
float y
float x
float energy = 0.0f;

gridspacing * (float) 7j;

gridspacing * (float) 1i;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms|[n 17
float dy = yv - atoms[n+1];

float dz = z - atoms[n+2];
energy += atoms[n+3] / sgrtf (dx*dx + dy*dy + dz*dz);
}
energygrid[grid.x*grid.y*k + grid.x*3j + i] += energy;

A Fast DCS CUDA Gather Kernel

float curenergy = energygrid[outaddr]; -<-::j_:j Start global memory reads
| early. Kemel hides some of

—— ., . ,
float coorx = gridspacing * xindex: its own latency.

float coory = gridspacing * yindex;

int atomud;

float energyval=0.0f:

for (atomid=0: atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x:
float dy = coory - atominfo[atomid].y:
energyval += atominfo[atomid].w *

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z):

b " Onlydependency on global
energygrid[outaddr] = curenergy + energyval; | memory readis at the end of
the kernel...

Anvoia [/ @uos

Adjustments

— Ratio of calculation to memory acess ratio is suboptimal
— dz*dz is always the same and can be cached

A Fast DCS CUDA Gather Kernel v2

...for (atomid=0; atomid<numatoms: atomid++) {
float dy = coory - atominfo[atomid].y:
float dysqpdzsq = (dy * dy) ®atominfo[atomid].z:
float x = atominfo[atomid].x:
float dx1 = coorx| - x:
float dx2 = coorx2 - x:
float dx3 = coorx3 - x;
float dx4 = coorx4 - x:
float charge = atominfo[atomid].w;
energyvalx] += charge * rsqrtf(dx 1*dx1 + dysqpdzsq):
energyvalx2 += charge * rsqrif(dx2*dx2 + dysqpdzsq):
energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq):
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq):

Compared to non-unrolled
kernel: memory loads are
decreased by 4x, and FLOPS
per evaluation are reduced, but
register use 1s increased. . .

Anvoia [/ @uos

Memory Coalesing

" = (Unrolled, coalesced)
Unrolling increases

computational tile size Grid of thread blocks: S
. W '
Thread blocks: \
64-256 threads N\ 0,0 0,1

4 Po——
+
i

\ { 1'0 » ‘
/ ‘ e
\\ ‘ If \\\ .
LSS i
Threads compute - §H

up to eight potentials,
skipping by half-warps

1.1

Padding waste I

Anvoia [/ @uos

A Fast DCS CUDA Gather Kernel v2

...float coory = gridspacing * yindex:
float coorx = gridspacing * xindex:

float gridspacing_coalesce = gridspacing * BLOCKSIZEX:ﬁ Points spaced for

nt atomid; . _ memory coalescing
for (atomid=0: atomid<numatoms: atomid++) {

float dy = coory - atominfo[atomid].y:

2= * dy) + atomi tomid).z; ————— . .
float dyz2 = (dy * dy) a onunfo[é omid].z =" Reuse partial distance
float dx1 = coorx - atominfo[atomid].x:

[...] components dy”2 + dz"2

float dx8 = dx7 + gridspacing_coalesce:
energyvalxl —= atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2):
[...]

energyvalx8 ~= atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2):
1

J
energygrid[outaddr] += energyvalx|: - Global memory ops
[...] occur only at the end
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7: of the kernel.
decreases register use

A nvIDIA [[LLINOIS

Speed comparison

Performance versus size

Lower
1s better 100

W |

GPU fully utilized,

\ \Potential lattice evaluation in seconds

1 ~40x faster than CPU
-"x,x']
/mfx S Direct summation, CPU —+— 1
T Direct summation, 1 GPU ---s--- |
< :
1000 10,000 100,000

Number of atoms

cclerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
Journal of Computational Chemistry, 28:2618—-2640, 2007.

A nvIDIA [[LLINOIS

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Slide 1: Module 16 - Application Case Study – Electrostatic Potential Calculation
	Slide 2: Objective
	Slide 3: VMD
	Slide 4: Electrostatic Potential Map
	Slide 5: Electrostatic Potential Calculation
	Slide 6: Overview of Direct Coulomb Summation (DCS) Algorithm
	Slide 7: Irregular Input vs. Regular Output
	Slide 8: Summary of Sequential C Version
	Slide 9: A Sequential C Version
	Slide 10: CUDA DCS Implementation Overview
	Slide 11: CUDA Parallelization
	Slide 12: Overview of the DCS kernel design
	Slide 13: A Fast DCS CUDA Gather Kernel
	Slide 14: A Fast DCS CUDA Gather Kernel
	Slide 15: Adjustments
	Slide 16: A Fast DCS CUDA Gather Kernel v2
	Slide 17: Memory Coalesing
	Slide 18: A Fast DCS CUDA Gather Kernel v2
	Slide 19: Speed comparison
	Slide 20

