
Accelerated Computing

GPU Teaching Kit

Lecture 16.1 - Electrostatic Potential Calculation

Module 16 - Application Case Study – Electrostatic Potential Calculation

2

Objective

– To learn how to apply parallel programming techniques to an
application
– Thread coarsening for more work efficiency

– Data structure padding for reduced divergence

– Memory access locality and pre-computation techniques

3

VMD

– Visual Molecular Dynamics
– Visualizing, animating, and analyzing bio-molecular systems

– More than 200,000 users worldwide

– Batch (movie making) vs. interactive mode

– Runs on laptops, desktops, clusters, supercomputers

4

Electrostatic Potential Map

– Calculate initial electrostatic potential map around the simulated
structure considering the contributions of all atoms
– Most time consuming, focus of our example.

potential[j]: potential

at grid (lattice) point

being evaluated

atom[i]

ri,j: distance from

grid (lattice) point

j to atom[i]

5

Electrostatic Potential Calculation

– The contribution of atom[i] to the electrostatic potential at lattice[j] is
potential[j] = atom[i].charge / rij.

– In the Direct Coulomb Summation method, the total potential at
lattice point j is the sum of contributions from all atoms in the system.

6

Overview of Direct Coulomb Summation
(DCS) Algorithm

– One way to compute the electrostatic potentials on a grid,
ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

– For each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])

– Approximation-based methods such as cut-off summation
can achieve much higher performance at the cost of
some numerical accuracy and flexibility

7

Irregular Input vs. Regular Output

– Atoms come from modeled
molecular structures, solvent
(water) and ions
– Irregular by necessity

– Energy grid models the
electrostatic potential value at
regularly spaced points
– Regular by design

©Wen-mei W. Hwu and David

8

Summary of Sequential C Version

– Algorithm is input oriented
– For each input atom, calculate its contribution to all grid points in an x-y slice

– Output (energy grid) is regular
– Simple linear mapping between grid point indices and modeled physical

coordinates

– Input (atom) is irregular
– Modeled x,y,z coordinate of each atom needs to be stored in the atom array

– The algorithm is efficient in performing minimal number of
calculations on distances, coordinates, etc.

8

9

A Sequential C Version

10

CUDA DCS Implementation Overview

– Allocate and initialize potential map memory on host CPU

– Allocate potential map slice buffer on GPU

– Preprocess atom coordinates and charges

– Loop over potential map slices:
– Copy potential map slice from host to GPU

– Loop over groups of atoms:

– Copy atom data to GPU

– Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host

– Free resources

11

CUDA Parallelization

– Operations done fore each lattice point are independent of each
other, what makes them good candidate for parallelization

– Atom positions and charges are used for all lattice point calculation,
retriving data is apotential bottleneck.

12

Overview of the DCS kernel design

13

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,

int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

14

A Fast DCS CUDA Gather Kernel

15

Adjustments

– Ratio of calculation to memory acess ratio is suboptimal

– dz*dz is always the same and can be cached

16

A Fast DCS CUDA Gather Kernel v2

17

Memory Coalesing

18

A Fast DCS CUDA Gather Kernel v2

19

Speed comparison

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Slide 1: Module 16 - Application Case Study – Electrostatic Potential Calculation
	Slide 2: Objective
	Slide 3: VMD
	Slide 4: Electrostatic Potential Map
	Slide 5: Electrostatic Potential Calculation
	Slide 6: Overview of Direct Coulomb Summation (DCS) Algorithm
	Slide 7: Irregular Input vs. Regular Output
	Slide 8: Summary of Sequential C Version
	Slide 9: A Sequential C Version
	Slide 10: CUDA DCS Implementation Overview
	Slide 11: CUDA Parallelization
	Slide 12: Overview of the DCS kernel design
	Slide 13: A Fast DCS CUDA Gather Kernel
	Slide 14: A Fast DCS CUDA Gather Kernel
	Slide 15: Adjustments
	Slide 16: A Fast DCS CUDA Gather Kernel v2
	Slide 17: Memory Coalesing
	Slide 18: A Fast DCS CUDA Gather Kernel v2
	Slide 19: Speed comparison
	Slide 20

