GPU Teaching Kit

Accelerated Computing

Module 23 — Dynamic Parallelism

Lecture 23 - In depth study of Dynamic Parallelism

Dynamic Parallelism

|zzat El Hajj
American University of Beirut
Wen-mei Hwu
University of lllinois at Urbana-Champaign

SAnvioia [@umuxos

Objective

— To learn about CUDA Dynamic Parallelism

— Applications that benefit from Dynamic parallelism
— Dynamic parallelism in action with BFS algorithm
— Dynamic parallelism Optimization

LLINOIS

Dynamic Parallelism

i

~

848

m

o

8889

5558

Nested Parallelism

— Dynamic parallelism is useful for programming applications with
nested parallelism where each thread discovers more work that

can be parallelized

— Dynamic parallelism is particularly useful when the amount of nested
work is dynamically determined at execution time, so enough
threads cannot be launched up front

SR IR

S [Boos [

Applications of Dynamic Parallelism

— Applications whose amount of nested
work may be unknown before
execution time:

— Nested parallel work is irregular (varies
across threads)

— e.g., graph algorithms (each vertex has a
different #neighbors)

— e.g., Bézier curves (each curve needs
different #points to draw) +

— Nested parallel work is recursive with data- "_
depdent depth —f— —f—

— e.g., tree traversal algorithms (e.g.,
guadtrees and octrees)

— e.g., divide and conquer algorithms (e.g., " W
quicksort) I .
¥ X ¥
B N N |

Example: BFS

g Level 0 => Level 1

Previous Frontier: ‘ Next Frontier: QOOO

Example: BFS

Previous Frontier:

Level 1 => Level 2

REE!
0000

Next Frontier:

0000

Example: BFS

Previous Frontier:

2

g g g IzevEI2=> Level 3

Next Frontier:

OO0

Examgole: BFS

Previous Frontier:

Level 3 => Level 4
L 44

Next Frontier:

BFS Code

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currfFrontier, unsigned int numPrevFrontier, unsigned int*
numcurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
(i < numPrevFrontier) {
unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[nod
(unsigned int i = 0; i < numNeighbors; ++i) {
unsigned int edge = start + 1i;
unsigned int neighbor = csrGraph.neighbors[edge];
(atomicCAs(&nodeLevel [neighbor], , level) ==) { // Not previously visited
unsigned int currfFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

} Loop over
neighbors can be
parallelized

SAnvibia

Dynamic Parallelism API

— The device code for calling a kernel to launch a grid is the same as
the host code

— Memory is needed for buffering grid launches that have not started
executing

— The limit on the number of dynamic launches is referred to as the pending launch
count

— By default, the runtime supports 2048 launches, and exceeding this limit will cause
an error

— The limit can be increased as follows:

cudabeviceSetLimit(cudaLimitbevRuntimePendingLaunchCount, < new limit >);

SAnvibia

BFS Code with Dynamic Parallelism

__global__ void bfs_neighbors_kernel (CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int*
currFrontier,
unsigned int* numCurrFrontier, unsigned int Tevel, unsigned int start, unsigned int numNeighbors)

{
_ . _ Loop index becomes a
unsigned int i = blockIdx.x*bTockDim.x + threadldx;;?_—___““‘————-____ .
(i < numNeighbors) { thread index
unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
(atomicCAs(&nodeLevel [neighbor], , level) ==) { // Not previously visited
unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;
}
}
}

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currfFrontier, unsigned int numPrevFrontier, unsigned int* numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

(i < numPrevFrontier) { Loop becomes a

unsigned int node = prevFrontier[i];

unsigned int start = csrGraph.nodePtrs[node]; kernel Ca”
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;

unsigned int numThreadsPerBlock = ;

unsigned int numBlocks = (numNeighbors + numThreadsPerBloc)/numThreadsPerBlock;

bfs_neighbors_kernel <<< numBlocks, numThreadsPerBloc
(csrGraph, nodeLevel, currFrontier, numCurrfFrontier, level, start, numNeighbors);

}
e ma

Streams

— Recall: without specifying a stream when calling a kernel, grids get
launched into a default stream

— For device launches, threads in the same block share the same

default stream
— Launches by threads in the same block are serialized

4498459888358

NV T NV T NV T AN
\\17 \\17 NI/ \L 1/

/ / \u/ \\J/
per-block
default stream

Auuwos [

Per-Thread Streams

— Parallelism can be improved by creating a different stream per
thread

— Approach #1: Use stream API just like on host
— Approach #2: Use compiler flag --default-stream per-thread

0343853155

Shinie YA Y
N
N
N
YAV

per-thread
stream

Optimizations

— Pitfalls:

— Launching very small grids may not be worth the overhead (more efficient to
serialize)

— Launching too many grids causes queueing delays

— Optimization: apply a threshold to the launch
— Only launch the large grids that are worth the overhead and serialize the rest
— Threshold value is data dependent and can be tuned

— Optimization: aggregate launches

— Have one thread collect the work of multiple threads and launch a single grid on
their behalf

BFS Code with Threshold

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int¥*
numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

(i < numPrevFrontier) { Check if the
unsigned int node = prevFrontier[i]; .
threshold is met

unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph S[node +
(numNeighbors >) {
unsigned int numThreadsPerBlock = ;
unsigned int numBlocks = (numNeighbors + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_neighbors_kernel <<< numBlocks, numThreadsPerBlock >>>
(csrGraph, nodeLevel, currFrontier, numCurrfFrontier, level, start,

] - start;

numNeighbors);
1 {
(unsigned int i = 0; i < numNeighbors; ++i) {
unsigned int edge = start + 1i;
unsigned int neighbor = csrGraph.neighbors[edge];
(atomiccCAs(&nodeLevel [neighbor], , level) ==) {
unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currfFrontier[currFrontierIdx] = neighbor;
1
1
}
}
}

SAnvibia

Offloading Host Driver (Control) Code

— In some applications, the host code that drives the computation
launches multiple consecutive grids to synchronize across all
threads between launches

— e.g., BFS launches a new grid for each level

— Another application of dynamic parallelism is to offload the driver
code to the device
— Main advantage is to free up the host to do other things

BFS Driver Kernel with Dynamic Parallelism

__global__ void bfs_driver_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int* numCurrfFrontier) {

unsigned int numPrevFrontier = 1;
unsigned int numThreadsPerBlock = ;
(unsigned int Tevel = 1; numPrevFrontier > 0; ++level) {

// Visit nodes 1in previous frontier
*numCurrfFrontier = 0;
unsigned int numBlocks = (numPrevFrontier + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_kernel <<< numBlocks, numThreadsPerBlock >>>
(csrGraph, nodeLevel, prevFrontier, currFrontier, numPrevFrontier, numCurrFrontier,
level);
cudabevicesynchronize();

// Swap buffers

unsigned int* tmp = prevFrontier;
prevFrontier = currFrontier;
currFrontier = tmp;

numPrevFrontier = *numCurrFrontier;

Launch a single thread

to drive the computation
Host code:

bfs_driver_kernel <<< 1, >>> (csrGraph, nodeLevel, prevFrontier, currFrontier, numCurrFrontier);

Memory Visibility

Operations on global memory made by a parent thread before the
launch are visible to the child

Operations made by the child are visible to the parent after the child returns and the
parent has synchronized

A thread’s local memory and a block’s shared memory cannot be
accessed by child threads
Child threads launched by a parent thread may run on a different SM

Nesting Depth

— The nesting depth refers to how deeply dynamically launched
grids may launch other grids
— Determined by the hardware (typical value is 24)

s
s (EHHEES
R
S

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

