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Objective
– To learn about CUDA Dynamic Parallelism

– Applications that benefit from Dynamic parallelism

– Dynamic parallelism in action with BFS algorithm

– Dynamic parallelism Optimization
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Dynamic Parallelism

– CUDA dynamic parallelism refers to the ability of threads executing 
on the GPU to launch new grids
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Nested Parallelism

– Dynamic parallelism is useful for programming applications with 
nested parallelism where each thread discovers more work that 
can be parallelized

– Dynamic parallelism is particularly useful when the amount of nested 
work is dynamically determined at execution time, so enough 
threads cannot be launched up front



6

Applications of Dynamic Parallelism

– Applications whose amount of nested 
work may be unknown before 
execution time:

– Nested parallel work is irregular (varies 
across threads)

– e.g., graph algorithms (each vertex has a 
different #neighbors)

– e.g., Bézier curves (each curve needs 
different #points to draw)

– Nested parallel work is recursive with data-
depdent depth

– e.g., tree traversal algorithms (e.g., 
quadtrees and octrees)

– e.g., divide and conquer algorithms (e.g., 
quicksort)
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Example: BFS

Level 0 => Level 1
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Example: BFS

Level 1 => Level 2
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Example: BFS

Level 2 => Level 3
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Example: BFS

Level 3 => Level 4
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BFS Code

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier, 
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* 

numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
for(unsigned int i = 0; i < numNeighbors; ++i) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) { // Not previously visited

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}

} Loop over 

neighbors can be 

parallelized
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Dynamic Parallelism API

– The device code for calling a kernel to launch a grid is the same as 
the host code

– Memory is needed for buffering grid launches that have not started 
executing

– The limit on the number of dynamic launches is referred to as the pending launch 
count

– By default, the runtime supports 2048 launches, and exceeding this limit will cause 
an error

– The limit can be increased as follows:

cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, < new limit >);



13

BFS Code with Dynamic Parallelism
__global__ void bfs_neighbors_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* 
currFrontier,

unsigned int* numCurrFrontier, unsigned int level, unsigned int start, unsigned int numNeighbors) 
{

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numNeighbors) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) { // Not previously visited

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
unsigned int numThreadsPerBlock = 1024;
unsigned int numBlocks = (numNeighbors + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_neighbors_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, currFrontier, numCurrFrontier, level, start, numNeighbors);
}

}

Loop becomes a 

kernel call

Loop index becomes a 

thread index
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Streams

– Recall: without specifying a stream when calling a kernel, grids get 
launched into a default stream

– For device launches, threads in the same block share the same 
default stream

– Launches by threads in the same block are serialized

per-block 
default stream
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Per-Thread Streams

– Parallelism can be improved by creating a different stream per 
thread

– Approach #1: Use stream API just like on host

– Approach #2: Use compiler flag --default-stream per-thread

per-thread 
stream
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Optimizations

– Pitfalls:
– Launching very small grids may not be worth the overhead (more efficient to 

serialize)

– Launching too many grids causes queueing delays

– Optimization: apply a threshold to the launch
– Only launch the large grids that are worth the overhead and serialize the rest

– Threshold value is data dependent and can be tuned

– Optimization: aggregate launches
– Have one thread collect the work of multiple threads and launch a single grid on 

their behalf
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BFS Code with Threshold

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* 

numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
if(numNeighbors > 1200) {

unsigned int numThreadsPerBlock = 1024;
unsigned int numBlocks = (numNeighbors + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_neighbors_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, currFrontier, numCurrFrontier, level, start, 
numNeighbors);

} else {
for(unsigned int i = 0; i < numNeighbors; ++i) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) {

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}
}

}

Check if the 

threshold is met
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Offloading Host Driver (Control) Code

– In some applications, the host code that drives the computation 
launches multiple consecutive grids to synchronize across all 
threads between launches

– e.g., BFS launches a new grid for each level

– Another application of dynamic parallelism is to offload the driver 
code to the device

– Main advantage is to free up the host to do other things
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BFS Driver Kernel with Dynamic Parallelism
__global__ void bfs_driver_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,

unsigned int* currFrontier, unsigned int* numCurrFrontier) {

unsigned int numPrevFrontier = 1;
unsigned int numThreadsPerBlock = 256;
for(unsigned int level = 1; numPrevFrontier > 0; ++level) {

// Visit nodes in previous frontier
*numCurrFrontier = 0;
unsigned int numBlocks = (numPrevFrontier + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, prevFrontier, currFrontier, numPrevFrontier, numCurrFrontier, 
level);

cudaDeviceSynchronize();

// Swap buffers
unsigned int* tmp = prevFrontier;
prevFrontier = currFrontier;
currFrontier = tmp;
numPrevFrontier = *numCurrFrontier;

}

}

Host code:

bfs_driver_kernel <<< 1, 1 >>> (csrGraph, nodeLevel, prevFrontier, currFrontier, numCurrFrontier);

Launch a single thread 

to drive the computation
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Memory Visibility

– Operations on global memory made by a parent thread before the 
launch are visible to the child

– Operations made by the child are visible to the parent after the child returns and the 
parent has synchronized

– A thread’s local memory and a block’s shared memory cannot be 
accessed by child threads

– Child threads launched by a parent thread may run on a different SM
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Nesting Depth

– The nesting depth refers to how deeply dynamically launched 
grids may launch other grids

– Determined by the hardware (typical value is 24)

Nested grid 
launches
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