
Accelerated Computing

GPU Teaching Kit

Lecture 23 - In depth study of Dynamic Parallelism 

Module 23 – Dynamic Parallelism



2

Dynamic Parallelism
Izzat El Hajj

American University of Beirut

Wen-mei Hwu

University of Illinois at Urbana-Champaign



3

Objective
– To learn about CUDA Dynamic Parallelism

– Applications that benefit from Dynamic parallelism

– Dynamic parallelism in action with BFS algorithm

– Dynamic parallelism Optimization



4

Dynamic Parallelism

– CUDA dynamic parallelism refers to the ability of threads executing 
on the GPU to launch new grids



5

Nested Parallelism

– Dynamic parallelism is useful for programming applications with 
nested parallelism where each thread discovers more work that 
can be parallelized

– Dynamic parallelism is particularly useful when the amount of nested 
work is dynamically determined at execution time, so enough 
threads cannot be launched up front



6

Applications of Dynamic Parallelism

– Applications whose amount of nested 
work may be unknown before 
execution time:

– Nested parallel work is irregular (varies 
across threads)

– e.g., graph algorithms (each vertex has a 
different #neighbors)

– e.g., Bézier curves (each curve needs 
different #points to draw)

– Nested parallel work is recursive with data-
depdent depth

– e.g., tree traversal algorithms (e.g., 
quadtrees and octrees)

– e.g., divide and conquer algorithms (e.g., 
quicksort)



7

Example: BFS

Level 0 => Level 1

0

∞ ∞

∞

∞

∞

∞ ∞ ∞

∞∞

∞
∞

∞

∞

∞

∞

Next Frontier:Previous Frontier:



8

Example: BFS

Level 1 => Level 2

0

1 1

1

1

∞

∞ ∞ ∞

∞∞

∞
∞

∞

∞

∞

∞

Next Frontier:Previous Frontier:



9

Example: BFS

Level 2 => Level 3

0

1 1

1

1

2

2 2 2

2∞

∞
∞

∞

∞

∞

∞

Next Frontier:Previous Frontier:



10

Example: BFS

Level 3 => Level 4

0

1 1

1

1

2

2 2 2

23

3
3

∞

∞

∞

∞

Next Frontier:Previous Frontier:



11

BFS Code

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier, 
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* 

numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
for(unsigned int i = 0; i < numNeighbors; ++i) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) { // Not previously visited

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}

} Loop over 

neighbors can be 

parallelized



12

Dynamic Parallelism API

– The device code for calling a kernel to launch a grid is the same as 
the host code

– Memory is needed for buffering grid launches that have not started 
executing

– The limit on the number of dynamic launches is referred to as the pending launch 
count

– By default, the runtime supports 2048 launches, and exceeding this limit will cause 
an error

– The limit can be increased as follows:

cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, < new limit >);



13

BFS Code with Dynamic Parallelism
__global__ void bfs_neighbors_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* 
currFrontier,

unsigned int* numCurrFrontier, unsigned int level, unsigned int start, unsigned int numNeighbors) 
{

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numNeighbors) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) { // Not previously visited

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
unsigned int numThreadsPerBlock = 1024;
unsigned int numBlocks = (numNeighbors + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_neighbors_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, currFrontier, numCurrFrontier, level, start, numNeighbors);
}

}

Loop becomes a 

kernel call

Loop index becomes a 

thread index



14

Streams

– Recall: without specifying a stream when calling a kernel, grids get 
launched into a default stream

– For device launches, threads in the same block share the same 
default stream

– Launches by threads in the same block are serialized

per-block 
default stream



15

Per-Thread Streams

– Parallelism can be improved by creating a different stream per 
thread

– Approach #1: Use stream API just like on host

– Approach #2: Use compiler flag --default-stream per-thread

per-thread 
stream



16

Optimizations

– Pitfalls:
– Launching very small grids may not be worth the overhead (more efficient to 

serialize)

– Launching too many grids causes queueing delays

– Optimization: apply a threshold to the launch
– Only launch the large grids that are worth the overhead and serialize the rest

– Threshold value is data dependent and can be tuned

– Optimization: aggregate launches
– Have one thread collect the work of multiple threads and launch a single grid on 

their behalf



17

BFS Code with Threshold

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,
unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* 

numCurrFrontier,
unsigned int level) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < numPrevFrontier) {

unsigned int node = prevFrontier[i];
unsigned int start = csrGraph.nodePtrs[node];
unsigned int numNeighbors = csrGraph.nodePtrs[node + 1] - start;
if(numNeighbors > 1200) {

unsigned int numThreadsPerBlock = 1024;
unsigned int numBlocks = (numNeighbors + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_neighbors_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, currFrontier, numCurrFrontier, level, start, 
numNeighbors);

} else {
for(unsigned int i = 0; i < numNeighbors; ++i) {

unsigned int edge = start + i;
unsigned int neighbor = csrGraph.neighbors[edge];
if(atomicCAS(&nodeLevel[neighbor], UINT_MAX, level) == UINT_MAX) {

unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
currFrontier[currFrontierIdx] = neighbor;

}
}

}
}

}

Check if the 

threshold is met



18

Offloading Host Driver (Control) Code

– In some applications, the host code that drives the computation 
launches multiple consecutive grids to synchronize across all 
threads between launches

– e.g., BFS launches a new grid for each level

– Another application of dynamic parallelism is to offload the driver 
code to the device

– Main advantage is to free up the host to do other things



19

BFS Driver Kernel with Dynamic Parallelism
__global__ void bfs_driver_kernel(CSRGraph csrGraph, unsigned int* nodeLevel, unsigned int* prevFrontier,

unsigned int* currFrontier, unsigned int* numCurrFrontier) {

unsigned int numPrevFrontier = 1;
unsigned int numThreadsPerBlock = 256;
for(unsigned int level = 1; numPrevFrontier > 0; ++level) {

// Visit nodes in previous frontier
*numCurrFrontier = 0;
unsigned int numBlocks = (numPrevFrontier + numThreadsPerBlock - 1)/numThreadsPerBlock;
bfs_kernel <<< numBlocks, numThreadsPerBlock >>>

(csrGraph, nodeLevel, prevFrontier, currFrontier, numPrevFrontier, numCurrFrontier, 
level);

cudaDeviceSynchronize();

// Swap buffers
unsigned int* tmp = prevFrontier;
prevFrontier = currFrontier;
currFrontier = tmp;
numPrevFrontier = *numCurrFrontier;

}

}

Host code:

bfs_driver_kernel <<< 1, 1 >>> (csrGraph, nodeLevel, prevFrontier, currFrontier, numCurrFrontier);

Launch a single thread 

to drive the computation



20

Memory Visibility

– Operations on global memory made by a parent thread before the 
launch are visible to the child

– Operations made by the child are visible to the parent after the child returns and the 
parent has synchronized

– A thread’s local memory and a block’s shared memory cannot be 
accessed by child threads

– Child threads launched by a parent thread may run on a different SM



21

Nesting Depth

– The nesting depth refers to how deeply dynamically launched 
grids may launch other grids

– Determined by the hardware (typical value is 24)

Nested grid 
launches



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

