
Accelerated Computing

GPU Teaching Kit

Warps and SIMD Hardware

Module 5.1 – Thread Execution Efficiency



2

Objective

– To understand how CUDA threads execute on SIMD Hardware
– Warp partitioning

– SIMD Hardware

– Control divergence



3

Warps as Scheduling Units

– Each block is divided into 32-thread warps
– An implementation technique, not part of the CUDA programming 

model

– Warps are scheduling units in SM

– Threads in a warp execute in Single Instruction Multiple Data 
(SIMD) manner

– The number of threads in a warp may vary in future generations

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…

Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…
Block 3 Warps



4

Warps in Multi-dimensional Thread Blocks

– The thread blocks are first linearized into 1D in row major order
– In x-dimension first, y-dimension next, and z-dimension last

4

Figure 6.1: Placing 2D threads into linear order

Trow,col = Ty,x



5

Blocks are partitioned after linearization

– Linearized thread blocks are partitioned 
– Thread indices within a warp are consecutive and increasing

– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow

– However, the exact size of warps may change from 
generation to generation

– DO NOT rely on any ordering within or between 
warps
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later).



6

SMs are SIMD Processors

– Control unit for instruction fetch, decode, and control is shared 
among multiple processing units
– Control overhead is minimized (Module 1)

Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared 

Memory
Register

File

Control Unit

PC IR



7

SIMD Execution Among Threads in a Warp

– All threads in a warp must execute the same instruction 
at any point in time

– This works efficiently if all threads follow the same 
control flow path
– All if-then-else statements make the same decision

– All loops iterate the same number of times



8

Control Divergence

– Control divergence occurs when threads in a warp take 
different control flow paths by making different control 
decisions 
– Some take the then-path and others take the else-path of an if-

statement

– Some threads take different number of loop iterations than others

– The execution of threads taking different paths are 
serialized in current GPUs
– The control paths taken by the threads in a warp are traversed one 

at a time until there is no more.

– During the execution of each path, all threads taking that path will 
be executed in parallel

– The number of different paths can be large when considering 
nested control flow statements



9

Control Divergence Examples

– Divergence can arise when branch or loop 
condition is a function of thread indices

– Example kernel statement with divergence:
– if (threadIdx.x > 2) { }
– This creates two different control paths for threads in a block

– Decision granularity < warp size; threads 0, 1 and 2 follow 
different path than the rest of the threads in the first warp

– Example without divergence:
– If (blockIdx.x > 2) { }
– Decision granularity is a multiple of blocks size; all threads in 

any given warp follow the same path



10

Example: Vector Addition Kernel

// Compute vector sum C = A + B

// Each thread performs one pair-wise addition

__global__

void vecAddKernel(float* A, float* B, float* C, 

int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

10

Device Code



11

Analysis for vector size of 1,000 elements

– Assume that block size is 256 threads
– 8 warps in each block

– All threads in Blocks 0, 1, and 2 are within valid range
– i values from 0 to 767

– There are 24 warps in these three blocks, none will have control divergence

– Most warps in Block 3 will not control divergence
– Threads in the warps 0-6 are all within valid range, thus no control divergence

– One warp in Block 3 will have control divergence
– Threads with i values 992-999  will all be within valid range

– Threads with i values of 1000-1023 will be outside valid range

– Effect of serialization on control divergence will be small
– 1 out of 32 warps has control divergence

– The impact on performance will likely be less than 3%



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

