
Accelerated Computing

GPU Teaching Kit

Atomic Operations in CUDA

Module 7.3 – Parallel Computation Patterns (Histogram)

2

Objective

– To learn to use atomic operations in parallel programming

– Atomic operation concepts

– Types of atomic operations in CUDA

– Intrinsic functions

– A basic histogram kernel

3

Data Race Without Atomic Operations

– Both threads receive 0 in Old

– Mem[x] becomes 1

thread1:

thread2: Old  Mem[x]

New  Old + 1

Mem[x]  New

Old  Mem[x]

New  Old + 1

Mem[x]  New

Mem[x] initialized to 0

time

4

Key Concepts of Atomic Operations

– A read-modify-write operation performed by a single hardware
instruction on a memory location address
– Read the old value, calculate a new value, and write the new value to the

location

– The hardware ensures that no other threads can perform another
read-modify-write operation on the same location until the current
atomic operation is complete
– Any other threads that attempt to perform an atomic operation on the

same location will typically be held in a queue

– All threads perform their atomic operations serially on the same location

5

Atomic Arithmetic Operations in CUDA

– Performed by calling functions that are translated into single instructions
(a.k.a. intrinsic functions or intrinsics)

– Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare
and swap)

– Read CUDA C programming Guide for details

– Atomic Add

int atomicAdd(int* address, int val);

– reads the 32-bit word old from the location pointed to by address in
global or shared memory, computes (old + val), and stores the
result back to memory at the same address. These three operations
are performed in one atomic transaction. The function returns old.

6

More Atomic Adds in CUDA

– Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address,

unsigned int val);

– Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long

int* address, unsigned long long int val);

– Single-precision floating-point atomic add (Compute capability 2.x+)
float atomicAdd(float* address, float val);

– Double-precision floating-point atomic add (Compute capability 6.x+)

double atomicAdd(double* address, double val);

– 16-bit floating-point atomic add (Compute capability 7.x+)

__half atomicAdd(__half* address, __half val);

6

7

A Basic Text Histogram Kernel

– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

atomicAdd(&(histo[buffer[i]]), 1);

i += stride;

}

}

8

A Basic Histogram Kernel (cont.)
– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26)

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

